Quantum iterated function systems.
نویسندگان
چکیده
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
منابع مشابه
Rotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کاملDiscrete Iterated Function Systems
discrete iterated function systems discrete iterated function systems representation of discrete sequences with dimensional discrete iterated function systems discrete iterated function systems stochastic discrete scale invariance: renormalization representation of discrete sequences with high-dimensional power domains and iterated function systems fractal tilings from iterated function systems...
متن کاملQuantum Stochastic Processes, Quantum Iterated Function Systems and Entropy
We describe some basic results for Quantum Stochastic Processes and present some new results about a certain class of processes which are associated to Quantum Iterated Function Systems (QIFS). We discuss questions related to the Markov property and we present a definition of entropy which is induced by a QIFS. This definition is a natural generalization of the Shannon-Kolmogorov entropy from E...
متن کاملQuantum Intermittency in Almost-Periodic Lattice Systems Derived from their Spectral Properties
Hamiltonian tridiagonal matrices characterized by multi-fractal spectral measures in the family of Iterated Function Systems can be constructed by a recursive technique here described. We prove that these Hamiltonians are almost-periodic. They are suited to describe quantum lattice systems with nearest neighbours coupling, as well as chains of linear classical oscillators, and electrical transm...
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملEntropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies
In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2003